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Line-imaging Fabry-Perot interferometer

A.R. Mathews, R.H. Warnes, W.F. Hemsing, and G.R. Whittemore *

Los Alamos National Laboratory, MS P940
Los Alamos, NM 87545 USA

ABSTRACT

A method for measuring the velocity history of a line element on a shock-loaded solid has been demon-
strated. Light from a single-frequency laser is focused through a cylindrical lens to a line on a moving
target. The return Doppler-shifted image is passed through a Fabry-Perot interferometer. Because only
specific combinations of incident light angle and frequency can pass through the interferometer, the output
is an incomplete image of the moving target appearing as a set of fringes. This image is focused onto an
electronic streah camera and swept in time. The fringe pattern changes with time as the target surface
moves, allowing determination of velocity for each point on the target that forms a fringe. Because the
velocity can only be measured at the fringe positions, it is necessary to use an interpolating polynomial to
obtain a continuous function of time and velocity along the sampled line.

1. INTRODUCTION

Since the late 1960s, shockwave physicists have used optical techniques such as VISAR and Fabry-Perot
(FP) interferometry to measure the velocity history of an explosively driven target. In both techniques, a
laser :lluminates a spnt on the moving surface, and the frequency of the Doppler-shifted return light gives
a measure of the velocity. Review articles by McMillan, et al. (1], and Barker [2] describe the theory and
use of interferometers for measuring the velocity as a function of time for a single point. A recent paper by
Gidon and Behar [3] presents a technique for measuring the instantaneous velocity as a function of position
for an entire surface.

In this paper we describe a method, based on Fabry-Perot interferometry, for determinung the continuous
velocity history of a line segment on a fast moving surface. The idea was originally proposed by John Corfe
of AWE, Aldermaston, U.K. [4], who fielded experiments to test the validity of the technique. We have
performed similar experiments and have developed computer programs to quantitatively analyze the results.

3. DISCUSSION OF THE METHOD

La a typical FP experiment, a spherical lens focuses light from a single-frequency laser onto a spot on
the moving target, which must be near the ‘ocal point of the lens. Reflected light is collected and nearly
collimated by this lens and directed into the interferometer. The FP will tranamit light that is incident
at only a discrete set of angles from the interferometer axis. These favored angles are determined by the
wavelength of the light and the FP mirror spacing. Light exiting the FP is collected by another spherical
ens, and a fringe pattern is formed in the focal plane of this lens. When properly aligied, the pattern is
a set of concentric rings of high finesse.

*This work was mppon-ed by the United s(.;. Department of Energy under contract number W-7405-ENG-38.



The mathematical analysis of the fringe pattern is discussed in many standard optics texts. We will
follow t'. notation of Born and Wclf [5] to highlight some of the important relations. Light rays exiting
the FP interfere constructively when the interference condition

mA = 2dcosd (1)

is met. In this equation, m is the (integer) fringe order, A is the wavelength of the light, d is the FP mirror
spacing, and @ is the angle of incidence of the light measured with respect to the mirror axis. When a lens
of focal length f brings the rays to a focus, bright rings will appear at radii given by

rm = ftané, ~ f6, . (2)
The order of the central ring (@ = 0) is given by

_
™ = 3

(3)
s0,

m = mgcost, = mo(l ~ 2sin? 0?,,.) . (4)

~ [2(mo — m)
O = ‘/ — : (5)

Because the fringe order for the central ring is usually not an integer, it is normal to write the order for
the first bright ring in terms of a fractional order, e, as

Thus, for small angles,

m; = mg — e 0<e< . (6)
Then, the order for the pth bright ring (measured from the center) is given by

mp = mg - e~ (p-1) . (7)
Combining Eqs. (2), (3) and (7), gives the radius of the pth ring:
. g2(mo - m) 12
R e S (RN Q

Thus a frequency shift caused by motion of the target will lead to a change in the radii uf all the circular
fringes. Because each fringe originates from the same illuminated spot on the target, a typical multi-fringe
pattern contains redundant velocity information, By measuring the radii of these fringes as & function of
time, a precise velocity history for one point on the target can be determined.

For dynamic experiments, a major diameter of the circular fringe pattern is usually projected onto the
slit of a high-speed electronic streak camera. The resulting film record has the following characteristics:

a) Portions of the record corresponding to consiant velocity appeur as straight lines parallel to the time
axis.

b) Acceleration of the target toward the source causes the circular fringes to move vutward, ocecasionally
spawning new fringes at the center of the pattern.

¢) All fringes are symmetric about the center of the pattern.
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Fig. 1. Experimental setup for the line Fabry-Perot interferometer.

In the line-imaging version of the FP interferometer, we pass light from a 3 Watt CW argon-ion laser
(A = 514.5 nm) through a cylindrical lens to illuminate a 3.0-mm line segment on the target surface. For
the experiments described here, the target is a thin plast’: sheet driven by an electrically exploded copper
foil. We expect the resulting velocity profile to be zero a: che edges and rise to a maximum of 3 or 4 km/s
at the center. The width and flatness of the velocity peak varies from one experiment to another. Figure
1 illustrates the experimental arrangement.

The light from the illuminated line on the target is collected and nearly collimated by one or two
spherical lenses, and directed to the FP. These two lenses, in conjunction with the spherical lens at the
output of the FP, deterinine the size of the image on the streak camera slit. The FP acts as a spatial filter,
transmitting only the light that enters at the preferred set of angles (again, determined by the wavelength
of the light and the FP mirror spacing). For the line FP, the light cnllected from the target originates from
many points along the illuminated line. Thus, for a given mirror spacing, the image on the camera slit
will be a set of bright fringes at positions where the input angle and the wavelength of the light permit
transmission through the FP. We then streak the image in time (total time ~ 1 us) and record the fringes
on film.

In the line-imaging FP, there is no redundant velocity information; a fringe in the slit plane gives
information about the target velocity only at the corresponding position on the target. There is no velocity
information between fringes. If the target is stationary, or moving at a constant velocity, the fringe pattern
will consist of a set of concentric rings spaced similarly to those in a point FP record.

As the target accelerates, the wavelength of the reflected light will change, and the conditions for
constructive interference will also change. Changes in wavelength combined with different input angles

across the target lead to distortions in the fringe pattern in regions with relatively larger or smaller
acceleration.
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Fig. 2. Grayscale display of the digitized streak camera record. The illuminated line is oriented vertically
and time is increasing to the right. Note that the fringes are not symmetrical about the center of the
pattern.

An example of the resulting line FP streak record is shown in Fig. 2. Measurement of the fringe
locations provides a measure of the target veleiity as a function of time at discrete positions along the
iluminated line.

3. VELOCITY CALCULATION

The mathematical analysis required to convert fringe iocation to velocity is straightforward and is
equivalent to that for a point FP interferometer. It can be shown [1,3] that the velocity for the nth
dynamic fringe is given by

ed (12 . 72
v = — —_—— - n 9
4d \r? - rd ! ®)
where
n = dynamic fringe number, increasing outward from the cenler of

the pattern (n = p - 1),

ro = radius of the innermoast atatic fringe,
r1 = radius of the nezt larger static fringe,
r = radiusof a dynamic fringe, and
¢ = velocityof light.

The term (cA / 4d), the “fringe constant,” is the velocity change required to displace a fringe, number n,
to the position of the next larger fringe, number n + 1. The first term in parenthesis in Eq. (9) is the
partial {ringe displacement from the static position to the dynamic position, r. The second term, n, is the
fringe number for a static fringe that has been displaced to a new dynamic position. It allows for integer



fringe discontinuities that can occur in some experiments. The value of n increases by one for each fringe
counted outward from the innermost fringe (n = 0). As new fringes are born, however, the value of n
associated with the fringe becomes less than zero and decreases by one for each new fringe.

If we now define

and

then Eq. (9) can be rewritten in the form
v =ar®-b. (10)

Thus, a plot of velocity as a function of radius shows that solutions to Eq. (9) describe a set of parabolas
separated by constant distance along the = 0 axis. These parabolas represent the locations that bright
fringes will form for any combination of velocity and position [6]. Plotting the intersections between the
parabolas and the assumed velocity profile gives the positions of fringes for any given time, t. If this process

is repeated for many different values of t, a synthetic streak record for the proposed experiment can be
produced.

Figure 3 shows how one can predict the fringe record for the type of velocity profiles we expect in our
experiments. In the upper graph the assumed velocity profiles for four different times are superimposed on
the solutions to the velocity equation. Note that for ¢ = 0, the static case, the velocity profile is a straight
line at v = 0. Intersections of this velocity profile with the parabolas give the initial locations of bright
fringes on the streak record. Repeating this process for three additional times produces the synthetic fringe
record shown in the lower portion of Fig. 3.

Because the fringes represent the velocity at different points on the target, the dynamic portion of the
record is generally not symmetric. As a result, fringes can appear and disappear in a confusing manner. A
preliminary graphical analysis has made it possible for us to resolve apparent ambiguities in the physical
record, and has simplified \he processing necessary for quantitative analysis.

4. DATA ANALYSIS

The analysis of a fringe record is the inverse of the process described above. Starting with the dataset
shown in Fig. 2, we can use the fringe position at each time to determine the velocity of the target at
the corresponding location on the illuminated line. Combining the time slices yields a map of the velocity
distribution as a function of time and position on the target. Because the velocity can be found only at
the fringe locations, the function must be interpolated to form a continuous distribution. Details of our
analysis [ollow.

The first step in the analysis process consisted of digitizing the film record. For our initial experiments,
the useful portion of the 4x5-inch film was scanned on a flatbed microdensitometer in 30 um increments.
This yielded a digitized image with 1333 x 667 pixels that was scaled down to 666 x 333 for processing.
The fringes were traced by hand, and the distance to the center of the pattern was calculated for each
fringe position. We assumed that there were no discontinuous fringe jumps, so the value of the dynamic
fringe number, n, changed by one for each fringe.
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Fig. 3. Graphical representation of fringe evolution. Bright fringes occur at intersections between a
velocity profile (for a given time) and parabolas that represent solutions to the velocity equation. The
dotted lines in the top figure represent velocity profiles for four different times (the velocity for t = 0 lies
along the horizontal axis). The lower half of the figure shows the fringe pattern that results fromn the
assumed velocity profiles. Fringe number 0 is the innermost static fringe and n increases or decreases by
one for each neighboring fringe. Note that new fringes are “born” between adjacent time steps.
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Fig. 4. The velocities calculated for each fringe position (fringe constant =~ 1 km/s). The width of each
fringe has been increased for easier viewing. In this graph, time is increasing toward the upper right,
position is increasing toward the upper left, and velocity is increasing vertically. The time interval shown
is 1 us and the object width is approximately 3 mm.

In an attempt to reduce the errors that accompany human input (e.g., eye response, jerky hand motion),
we introduced some constraints on the traced fringes. For example, the operator was given the option of
allowing the program to find the maximum fringe intensity within a predefir-4 zone surrounding the points
chosen by eye. This technique was originally implemented in owr point . analysis to reduce errors that
occur because the fringe profiles are not symmetric when plotted as a function of radius. That is, the
maximum intensity does not occur at the center of a fringe. In addition, the traced lines were fit with
a cubic spline function to produce some smoothing (this was switched off at fringe discontinuities). We
are currently investigating one- and two-dimensional fitting techniques that would automate the tracing
procedure and provide subpixel accuracy. After measuring each fringe position, we used Eq. (9) to calculate
the velocity as a function of time along each fringe. The resulting velocity map is shown in Fig. 4. In this
presentation the fringes have been widened by a factor of five to make them more visible.

It is desirable to interpolate the velocity distribution shown in Fig. 4 to form a continuous measure
of velocity as a function of time and position. Unfortunately, because there are few points per time
slice, the interpolated velocity map will not be unique. The result will depend upon factors such as the
choice of interpolating function, the size of the sample interval, and the noise in the measurements. We
have experimented with some simple interpolation schemes that appear to preserve the shape of the data
distribution while providing some smoothing for noise suppression.

The first method consists of calculating a weighted average of all non-zero velocities in a square region
surrounding each pixel. We have tried varying both the size of the neighborhood and the form of the
weighting function. Examples of the types of surface that result from a weighting function of the form



1/RP are shown in Fig. 5. The interpolated surface is reasonably smooth but is “pinched” in regions near
the fringes. This pinching is a consequence of the enhanced weight given to nearby pixels and tends to
increase as the value of p increases. That is, pixels on or near a fringe will be assigned the value of the
velocity at the closest fringe (weight = 1). However, for pixels that lie between fringes, the value assigned
to the pixel will be an average of velocities that are within the sample region. This leads to interpolated
surfaces thut peak near fringes and droop in the intervals between fringes. In general, functions with p >
1 lead to surfaces that conform to the data along the fringes, but drop off quickly on either side of the
fringe. Weighting functions with p < 1 tend to be “stiffer,” but do not follow the data values as closely.

An alternate approach consists of tiling the measured velocity distribution with planar patches and
using linear interpolation between tile edges. To guarantee planar surfaces, we connect the data points
with straight line segments to form triangles. A Delaunay triangulation scheme is utilized to generate
non-overlapping triangles [7,8]. We then use Simplex interpolation 9] to find the value of the velocity for
all points (pixels) inside each triangle.

Figures 6 and 7 demonstrate the use of this technique. Figure 6 shows the distribution of points and
triangles that result for the traced dataset (reduced by a factor of 10 to make the triangles more visible).
Figure 7 shows the velocity surface resulting from the Simplex interpolation between triangle vertices. This
surface is more blocky than thos2 shown in Fig. 5, but follows the data more closely. Simplex interpolation
also eliminates the pinched surfaces that occur in the weighted average methods. We are investigating
other interpolation schemes such as bicubic splines and thin plates, but do not expect the results to change
significantly.

5. CONCLUSION

We have demonstrated that a standard point Fabry-Perot interferometer can be modified to measure
the velocity of an illuminated line on a target. The resultir.g record is continuous in time but provides
a measure of velocity only at discrete spatial positions. Because the velocity is known only at the fringe
locations, and, in general, the fringes move with time, the points on the target where the velocity is known
are constantly changing. Therefore, it is necessary to interpolate the reduced data to obtain a smooth map
of the velocity / spatial position / time surface. Interpolation is also useful in regions where the fringes
cannot be traced with confidence.

Our initial experiments y.elded rather sparse data sets because we limited the number of fringes to
simplify the analysis procedure. It would be straightforward, however, to modify the focal lengths of the
lenses to adjust the magnification of the line target and the n imber of fringes superimposed on the image.
Increasing the number of fringes provides a more detailed sampling of the velocity surface, but also results
in a loss cf precision in the measure of velocity at each fringe position.

A close examination of Fig. 2 shows evidence of anomolous fringe behavior at the edges of the object.
Fringes appear to cross one another, break into fragments, or disappear completely. Our initial analysis
assumes that the target acceleration is continuous in space and time, and that acomolies in the fringe record
are caused by changes in the reflectivity of the target surface. Additionally, because the FP measures only
a single velocity component, we assurne that tlie dominant acceleration is parallel to the interferometer
axis. These assumptions are probably not true at the edges of the object. Because the light in these regions
is directed away from the interferometer, a detailed analysis is difficult.

linfortunately, the processing techniques we have described consume large amounts of computer re-
sources. But it is our experience that for many experiments the advantages of measuring velocity across a
line on a target far outweigh the difficulties of the analysis.
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